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Abstract. We do an analytical study of the statistical properties of an ecosystem composed of species
that are coupled via pairwise interactions that are given by the Hebb rule and have deterministic self-
interactions u. In the model each species is characterized by an infinite set of p = αN traits. As one of our
main results, we observe that the ecosystem becomes less cooperative as the complexity of species (number
of traits) is increased.

PACS. 87.10.+e General theory and mathematical aspects – 87.23.Cc Population dynamics and ecological
pattern formation – 87.23.Kg Dynamics of evolution

1 Introduction

The understanding of the nature of the complex interac-
tions between species is of great importance to the study of
ecosystems’ functioning. As well as the interactions, the
species composition also plays an important role in the
dynamics and functioning of the system. Previous investi-
gations show that the differences among traits of species
can have large impacts on processes taking place in ecosys-
tems [1]. In this contribution, we consider an ecosystem
model where the interactions between species take into ac-
count the degree of their similarity. This is done by assum-
ing a Hebb-like rule for the interactions between species.

The statistical mechanics of disordered systems has
been very useful in the investigation of the behavior of
complex systems consisting of many interacting species. In
that approach, the models assume that the fitness of the
species are a function of the interactions among individ-
uals. In this context, the deterministic replicator models
are used to investigate the coevolution of self-replicating
entities in a variety of fields such as ecology, game theory
and sociobiology [2]. An alternative approach that con-
siders random interactions, the random replicator model,
was developed by Diederich and Opper [3,4]. The dynam-
ics of the model is governed by a Lyapunov function such
that the only stationary states are fixed points. However,
the model permits the use of tools developed in equilib-
rium statistical mechanics to obtain analytically the aver-
age properties of the equilibrium states of the disordered
system.

Previous works about the random replicator model
usually suppose interactions among species to be statis-
tically independent random variables with Gaussian dis-
tribution [3–5]. In a more recent analysis, de Oliveira and
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Fontanari [6] studied the model taking into account a non-
random structure for the interactions among species. They
assumed that each species is characterized by a finite set
of binary traits and then the resulting couplings between
pairs of species depend on their traits according to a com-
plementarity principle. Moreover, a bias parameter that
favors one of the traits is introduced. In this contribution,
we also assume a non-random structure in the interac-
tions among species, but instead of dealing with a finite
number of traits defining each species, here each species
is characterized by an infinite set of binary traits.

The remaining of the paper is organized as follows. We
introduce the model in Section 2. In the following section
we use the replica approach to evaluate the average free-
energy density in the thermodynamic limit, and also to de-
rive the replica-symmetric order parameters. The stability
analysis of the replica-symmetric solution is also carried
out. In Section 4 we show our results for the probability
distribution of the concentrations of species. And finally,
we present the concluding remarks.

2 Model

In this model, the ecosystem is composed of an infinite
number N of distinct species, where xi ∈ [0,∞) de-
notes the concentration of individuals of species i (i =
1, . . . , N). Each species is then represented by a set of p
traits, ξµ

i , µ = 1, . . . , p. The interaction between each pair
of species depends on these traits according to a comple-
mentarity principle. We also assume that the number of
traits p is proportional to ecosystem size N , i.e., p = αN ,
where α ∈ [0, 1]. Furthermore, the traits are quenched,
independent random variables that can take on values +1
and −1 with probability 1/2.
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The fitness Fi of each species i is taken as the deriva-
tive Fi = ∂F/∂xi, where the fitness function F is calcu-
lated as

−F = H(x) =
∑
i<j

Jijxixj + u
∑

i

x2
i . (1)

Here, the coupling strength Jij between species i and j is
given by the Hebb rule

Jij =
1

2N

p∑
µ=1

ξµ
i ξµ

j i �= j, (2)

which was extensively used within the context of neural
networks [7]. Since we wish to maximize the fitness func-
tion, that corresponds to minimizing H(x), Jij < 0 corre-
sponds to pairs of cooperating species, whereas Jij > 0 to
pairs of competing species. Therefore, the larger the num-
ber of complementary traits (i.e., ξµ

i ξµ
j = −1), the more

cooperative the pair of species. The notion of complemen-
tarity in ecology has gained importance since empirical
observations show that complementary niches are more
efficient in the use of the resources of the environment
than monocultures [8].

The self-interaction parameter u ≥ 0 in equation (1)
guarantees the existence of a non-trivial thermodynamic
limit, N → ∞. It plays the role of a cooperation pressure
that limits the growth of any single species. The mean-
ing of positive self-interactions is that individuals of the
same species compete against themselves for the available
resources.

The concentrations of surviving species must satisfy
the constraint

N∑
i=1

xi = N, (3)

which introduces an additional source of competition
among the species.

The concentrations xi evolve in time according to the
replicator equation

dxi

dt
= −xi

[
∂H(x)

∂xi
− 1

N

∑
k

xk
∂H(x)
∂xk

]
∀i, (4)

which minimizes H(x) while the total concentration
∑

i xi

is kept constant. Hence the fixed points of the equation are
the minima of H(x). In the following we use the replica
formalism to obtain analytical derivations for the statisti-
cal properties of the minima.

3 Replica approach

Since we have to perform quenched averages on extensive
quantities, we define the average free-energy density f as

−βf = lim
N→∞

1
N

〈ln Z〉, (5)

where

Z =
∫ ∞

0

∏
i

dxiδ(N −
∑

i

xi)

× exp

{
− β

[
1
2

∑
µ

(
1√
N

∑
i

ξµ
i xi

)2

+

(
u − α

2

)∑
i

x2
i

]}
(6)

is the partition function and β = 1/T is the inverse tem-
perature. Here 〈. . . 〉 stands for the average taken on the
probability distribution

P(ξ) =
∏
µ

[
1
2
δ(ξµ

i − 1) +
1
2
δ(ξµ

i + 1)
]

. (7)

As usual, we evaluate the quenched average in equation (5)
through the replica method using the identity

〈ln Z〉 = lim
n→0

1
n

ln〈Zn〉, (8)

where we find 〈Zn〉 for integer n and analytically continue
to n = 0. Using standard techniques, we obtain in the
thermodynamic limit, N → ∞,

−βf = lim
n→0

1
n

extr

{∑
γ<δ

q̂γδqγδ +
1
2

∑
γ

Q̂γQγ

−β
(
u − α

2

)∑
γ

Qγ +
∑

γ

R̂γ + α ln G1(qγδ, Qγ)

+ lnG2(q̂γδ, R̂γ , Q̂γ)

}
, (9)

where

G1 =
∫ ∞

−∞

∏
γ

dp̃γdpγ

√
2π

exp

{
i
∑

γ

p̃γpγ − β

2

∑
γ

(pγ)2

−1
2

∑
γ

Qγ(p̃γ)2 −
∑
γ<δ

qγδp̃γ p̃δ

}
(10)

and

G2 =
∫ ∞

0

∏
γ

dxγ exp

{
−
∑
γ<δ

q̂γδxγxδ − 1
2

∑
γ

Q̂γ(xγ)2

−
∑

γ

R̂γxγ

}
· (11)

We evaluate the extremum in equation (9) over all saddle-
point parameters q̂γδ, qγδ, Q̂γ , Qγ e R̂γ . The order param-
eters

qγδ =

〈
1
N

N∑
i=1

〈xγ
i 〉T 〈xδ

i 〉T
〉

γ < δ, (12)
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and

Qγ =

〈
1
N

N∑
i=1

〈
(xγ

i )2
〉

T

〉
(13)

give the overlap between a pair of different equilibrium
states xγ and xδ, and the overlap of the equilibrium state
xγ with itself, respectively. Here, 〈. . . 〉T denotes a thermal
average taken over the Gibbs probability distribution:

W(x) =
1
Z

δ(N −
∑

i

xi) exp[−βH(x)]. (14)

We make the replica symmetric ansatz, i.e., we as-
sume that the saddle-point parameters are symmetric un-
der permutations of the replica indices, that is, q̂γδ = q̂,
qγδ = q, Q̂γ = Q̂, Qγ = Q and R̂γ = R̂. Using this pro-
cedure the evaluation of equation (9) is straightforward.
In order to clarify our results for the replica symmetric
average free-energy density it is convenient to introduce
the new variables

η = (Q̂ + q̂),

τ =
R̂√

2(Q̂ + q̂)

and

θ =
q̂

2(Q̂ + q̂)
,

in such way that

−βf =
η

2
[Q − 2θ(Q − q)] − βQ

(
u − α

2

)
+ τ
√

2η

−α

2
ln[β(Q − q) + 1]

− αβq

2[β(Q − q) + 1]
+

1
2

ln
(

π

2η

)

+
∫ ∞

−∞
Dz ln

{
exp[(τ + zθ1/2)2]erfc(τ + zθ1/2)

}
,

(15)

where

Dz =
dz√
2π

exp(−z2/2) (16)

is the Gaussian measure. In the zero-temperature limit,
the saddle-point equations ∂f/∂η = 0, ∂f/∂Q = 0,
∂f/∂q = 0, ∂f/∂θ = 0 and ∂f/∂τ = 0 result in

η = 2u − α +
α

y + 1
, (17)

θ =
αq

2(y + 1)[(2u − α)(y + 1) + α]
, (18)

τ =
√

η

2

[
1
η
− q + 2θy

]
, (19)

√
2η + τerfc

(
τ√
2θ

)
− 2θ1/2

√
2π

exp
(
−τ2

2θ

)
= 0 (20)
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Fig. 1. The order parameter q as a function of the self-
interaction u. The lines correspond to α = 0.2, 0.4, 0.6, 0.8
and 1 (as indicated in the figure).

and

−ηy +
1
2
erfc

(
τ√
2θ

)
= 0, (21)

where y = β(Q− q) < ∞. We have taken the limit T → 0
to ensure that only the states that minimize H(x) con-
tribute to Z.

In the replica-symmetric regime, the order parameter
q is defined as

q =

〈
1
N

∑
i

〈xi〉2T
〉

· (22)

Values of q of the order 1 indicate the coexistence of a
macroscopic number of species, i.e., x ≈ 1 for an exten-
sive number of species, whereas large values of q indicate
the dominance of few species. In Figure 1 we present q as a
function of the cooperation pressure u for different values
of parameter α. For large u, q tends to 1 independently of
α, which indicates that the ecosystem is cooperative and
so the majority of species survives. In the plot we show
that q diverges for u < α/2, indicating a strongly com-
petitive regime. For α < 1/2, q displays a discontinuity
for u = α/2. The discontinuity is due to the appearance
of another root in one of the saddle-point equations, that
provides another value for q that has a larger free-energy
density. The results in Figure 1 are clear evidence that
the lower the complexity of species composing the ecosys-
tem, the easier it is to get a cooperative ecosystem. (By
complexity we mean the number of traits p = αN .)

3.1 Stability analysis

To obtain the region where the replica-symmetric solution
is stable, we need to calculate the transverse eigenvalues
γ1 and γ2 [10] of the matrices of the second derivatives of
G1 and G2 with respect to qγδ and q̂γδ, respectively, that
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Fig. 2. The cumulative distribution of species concentrations for (a) α = 0.2, (b) α = 0.4, (c) α = 0.6, (d) α = 1 and some
values of parameter u (as indicated in the figure).

are evaluated at the replica-symmetric saddle-point. The
stability condition is given by [9]

αγ1γ2 ≤ 1. (23)

After some algebric manipulations we get

α

(y + 1)2

∫ ∞

−∞
Dz(〈x2〉 − 〈x〉2)2 ≤ 1, (24)

where

〈xn〉 =

∫∞
0 dxxn exp(− η

2x2 −√
2η(τ + θ1/2z)x)∫∞

0 dx exp(− η
2x2 −√

2η(τ + θ1/2z)x)
, (25)

so that the final solution is
α

η2(y + 1)2
≤ 1. (26)

Solving numerically equation (26), we have found that the
stability condition is always satisfied for u larger than α/2.

4 Probability distribution
of the concentrations of species

A better understanding about the diversity of species in
the ground-state can obtained through the calculation
of the probability distribution of the concentrations of

species. Thus, the probability that a species has concen-
tration xk = x is evaluated by

Pk(x) = lim
β→∞

〈∫ ∞

0

∏
i

dxiδ(xk − x)W(x)

〉
, (27)

where W(x) is given by equation (14). As all the species
concentrations are equivalent, we consider

P(x) = Pk(x) =
1
N

∑
k

Pk(x). (28)

In order to handle a possible singularity in the limit
β → ∞, we can alternatively consider the cumulative dis-
tribution function

C(x) =
∫ x

0

dx′P(x′). (29)

Carrying out the calculations within the replica-
symmetric framework we obtain

C(x) = 1 − 1
2
erfc

[
τ√
2θ

+
x

2

√
η

θ

]
, (30)

where τ , θ and η are given by the saddle-point equa-
tions (17–21).

In Figure 2 we present the cumulative distribution of
the species concentrations for several values of α and u.
From the figure, we can notice that a small value of the
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Fig. 3. Species diversity as a function of the self-interaction u.
The different curves correspond to α = 0.2, 0.4, 0.6, 0.8 e 1 (as
indicated in the figure).

cooperation pressure u is necessary in order to attain a
regime of cooperation among species in the ecosystem
(where the fraction of extinct species C(0) is equal to zero)
when α is not large. As the complexity of the species is
increased, a larger u is needed to support the cooperative
regime.

In Figure 3 we plot the diversity of species D = 1−C(0)
as a function of the parameter u for several values of α.
From the results we can infer that only a few species can
coexist when the cooperation pressure u is equal to zero,
although an increase in the number of surviving species is
observed with the increment of u. For large α the growth in
the diversity occurs in a smooth way, whereas for α < 1/2
a discontinuity is observed.

5 Concluding remarks

We investigated analytically an ecosystem model at which
the species are characterized by an infinite set of p traits,
and the interactions between pairs of species are a func-
tion of the traits according to a complementarity principle.

We used the replica approach to study the average prop-
erties of the equilibrium states of the system. The replica-
symmetric solution is stable when the self-interaction pa-
rameter in the Hamiltonian (u − α/2)

∑
i x2

i is positive.
We also noticed a growth in diversity of species when the
cooperation pressure is incremented. This growth is dis-
continuous for α < 0.5, indicating that the diversity in-
creases rapidly in this regime. All our results suggest that
the larger the complexity of species, the more difficult it is
to find complementary species in the ecosystem. This ef-
fect can be circumvented with the introduction of a higher
cooperation pressure. Similar behavior has been observed
in molecular evolution theory. In the quasispecies model
it was observed that there is a maximum value for the
complexity of the organism, beyond which the selective in-
formation is lost. In order to eliminate the problem other
mechanisms such as catalysis have been proposed.
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VMO would like to thank J.F. Fontanari for useful discussions.
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